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ABSTRACT

The S194 L-band radiometer flown on the Skylab mission

measured terrestrial radiation at the microwave wavelength of

21.4 cm. The terrain emissivity at this wavelength is strongly

dependent on the soil moisture content, which can be inferred

from antecedent precipitation. For the Skylab data acquisition

pass from the Oklahoma panhandle to southeastern Texas on 11 June

1973, the S194 brightness temperatures are highly correlated with

antecedent precipitation from the preceding eleven day period,

but very little correlation was apparent for the preceding five

day period. The correlation coefficient between the averaged

antecedent precipitation index values and the corresponding S194

brightness temperatures between 230 K and 270 K, the region of

apparent response to soil moisture in the data, was -0.97. The

equation of the linear least squares line fitted to the data was:

API (cm) = 31.99 - 0.114 TB (K), where API is the antecedent pre-

cipitation index and TB is the S194 .brightness temperature.
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THE CORRELATION OF SKYLAB L-BAND BRIGHTNESS TEMPERATURES

WITH ANTECEDENT PRECIPITATION

Introduction

The accurate determination of the temporal and spatial

distribution of soil moisture is of importance in several disci-

plines. The meteorologist is interested in the moisture content

of the upper several centimeters of the soil due to the governing

effects of soil moisture on the soil thermal properties, the evapo-

transpiration rates, and the resulting influence on the heat and

moisture transport at the atmosphere-earth boundary. As an example,

studies of the severe thunderstorm indicate that the inflow air

source region is from the near surface layer of the atmosphere

(Marwitz, 1972; Davies-Jones, 1974; and Sasaki, 1973). The addi-

tion of either heat or moisture to the inflow air adds energy to

the storm. Beebe (1974) found that the tornado frequency maxima

in the Texas panhandle was centered in the region of intense irri-.

gation and attributed the maxima to the increased water vapor con-

tent of the lower atmosphere as a result of evapotranspiration from

the irrigated fields. The hydrologist is interested in the soil

moisture content because the soil moisture in the upper several

centimeters largely determines the amount of precipitation which

appears as surface runoff, the component responsible for flooding.

The productivity of agricultural areas and rangeland is a function
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of the soil moisture available for plant growth. If the moisture

content could be monitored, better usage of rangeland and improved

crop yield estimates are possible.

Before the advent of remote sensing technology, accurate

soil measurements were possible through such direct methods as

neutron scattering probes, tensiometers, and oven drying and weigh-

ing. These methods all share common problems; they are time-con-

suming and representative of only very small areas. Measurements

of soil moisture distribution over large areas, especially those

with differing vegetative cover and soil type and those not read-

ily accessible, are not possible by direct methods. Because of a

pronounced need for soil moisture information, those hydrologists

responsible for river stage forecasting and flood warnings have

developed various parameters derived from precipitation measure-

ments to quantify the soil moisture over the fairly large areas

encompassed by river watersheds.

Based on the obvious but complex relationships between pre-

cipitation, evapotranspiration, surface and subsurface runoff, and

soil moisture, the precipitation history over an area is commonly

used to infer the soil moisture. From this, the amount of precipi-

tation required to produce flooding given the inferred soil mois-

ture content can be empirically determined. Many models for char-

acterizing the precipitation history have been devised; one of

the simplest in concept and computation is (Linsley, Kohler, and

Paulhus, 1958):
n

API = E K P.
i=l
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where API = antecedent precipitation index, and P. = daily precipi-

tation for each day from n days previous to the current day. The

parameter K which is less than unity characterizes the loss of

moisture from the soil due to evapotranspiration and subsurface

runoff. The values normally are empirically assigned in the range

0.85 to.0.95 as a function of soil type, slope, season, and.vege-

tative cover. The value may either be constant or may vary as a

function of time.

Remote Sensing of Soil Moisture

The remote sensing of soil moisture is possible through

several physical properties of water and the water-soil mixtures.

Water has a greater specific heat than soil, so for a given input

of heat energy, the temperature of moist soil will be lower than

that of dry soil. Similarly, after radiational cooling, the moist

soil will have a higher temperature due to its thermal inertia.

Thus remote sensing in the thermal infrared at two or more times

during the day can be used to indirectly determine the amount of

water present in the surface layer of soil (Blanchard, Greely, and

Goettelman, 1974).

Another remote 'sensing technique is based on the darkening

(decreased reflectance) of soil as it is progressively moistened,

apparently as a result of the optical effects of surrounding the

soil particles with free water. Within a narrow range of soil types

and for bare earth, remote sensing in the optical to near infrared

can be used to determine the soil moisture areal distribution.

Both of these techniques, although successful under con-
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trolled conditions, most notably bare ground, are completely over-

shadowed in scope and importance by remote sensing in the micro-

wave portion of the spectrum. Water has the highest dielectric

constant of naturally occurring abundant materials; soils have

very low dielectric /constants at microwave frequencies. When

varying amounts of water are added to the soil, the resulting

mixture will have a dielectric constant proportional to the rela-

tive amounts of water, soil, and air present (Poe, Edgerton, and

Stogryn, 1971). However, if small amounts of water are added to

completely dry soil, the water is tightly bound to the soil parti-

cles (with a structure resembling that of ice which has a low di-

electric constant), and the dielectric constant of the mixture

does not appreciably change (Schmugge, Gloerson, and Wilheit, 1972

and Schmugge, et.al., 1974). This low water content probably corre-

sponds to hygroscopic water so is not available for evapotranspira-

tion and plant growth. With a greater water content, the water

appears as free water in the soil pore spaces and produces the di-

electric constant changes predicted and observed in the soil-water-

air mixture as the moisture content ranges from the wilting point

to field capacity.

Since the emissivity in the microwave wavelengths of radia-

tion is strongly influenced by the dielectric constant, remote sens-

ing in the microwave frequencies has a significant potential in the

determination of soil moisture.

Microwave Remote Sensing of Soil Moisture

Although soil moisture has a pronounced influence on the
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microwave emission, the factors of soil type, surface roughness,

and vegetative cover also affect the emissivity. The soil type

and soil moisture determine the soil emissivity; the surface rough-

ness and vegetative cover modify the emission from the underlying

soil by scattering and surface emission (Newton, Lee, Rouse, and

Paris, 1974). The effects of surface roughness and vegetative

cover are wavelength dependent. The effect of small scale varia-

tions of soil type and soil moisture is minimized in remote sens-

ing from aircraft or earth satellite altitudes.since the antenna

receives radiation that is effectively integrated over a fairly

large ground area, thus providing soil moisture information repre-

sentative of large areas (Eagleman and Ulaby, 1974).

At longer wavelengths, the skin depth ':(the depth of the

surface layer contributing to the total emitted microwave radia-

tion) increases. Although some investigators have reported skin

depths in excess of the free space wavelength at L-band wavelengths

(Poe and Edgerton, 1972), a general consensus of the skin depth is

of the order of several centimeters under varying field conditions.

The major significance is that remote sensing in L-band microwave

can provide measurements of the sub-surface soil moisture content

under varying conditions of soil type, surface roughness, and vege-

tative cover.

A further advantage of the longer wavelength is that atmo-

sphere and weather phenomena including clouds and precipitation are

essentially transparent to the emitted microwave radiation due to

the small particle size in relation to the wavelength. At L-band

5



wavelengths, remote sensing operation is not restricted by ad-

verse weather conditions. At shorter microwave wavelengths,

such as the one to ten centimeter range commonly used for weather

radar, however, the larger cloud particles and precipitation

particles are effective scatterers and absorbers of emitted micro-

wave radiation.

For L-band wavelengths, the terrain apparent radiometric

temperature (the brightness temperature) received at the antenna

can be expressed as the product of the emissivity and the actual

or thermometric temperature of the radiating terrain skin depth.

The atmospheric emission and the surface reflection of sky radia-

tion components of the brightness temperature are both very small

(Allison, et.al., 1974 and Blanchard, 1974). Since the emissivities

are less than one and absolute surface temperatures range from 270 K

to 310 K, the brightness temperature is more sensitive to changes

in emissivity than to normal changes in surface temperature. Again,

the averaging effect of the large footprint is advantageous.

The Skylab soil moisture experiment conducted by Dr. J. R.

Eagleman of the University of Kansas has produced excellent results

in the correlation of S194 brightness temperature and soil moisture

(Eagleman, 1974; Eagleman and Ulaby, 1974; and Eagleman, et.al.,

1974). For five data sets of tracks of 100 to 300 km length in

Kansas and Texas, soil moisture measurements at six depths for six

km intervals along the ground track centerline were correlated with

the S194 brightness temperatures. The correlation coefficients of

brightness temperature to soil moisture (percent water by weight)
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ranged from -0.808 to -0.984 for the uppermost 2.5 cm layer and

-0.765 to -0.979 for the uppermost 7.5 cm layer for the five data

sets (Eagleman, 1974).

Since the half power footprint has a diameter in excess

of 100 km, the 100 km to 300 km track lengths represent few inde-

pendent measurements. Another greater problem lies in the repre-

sentativeness of center-line soil moisture measurements at selected

sites to the actual soil moisture within the footprint area, espe-

cially if the footprint area is not suited for conventional soil

moisture sampling, or if evapotranspiration or precipitation occurs

between the time-consuming sampling and the sensor pass time. How--

ever, in view of the good agreement between the data sets, these

high correlations are indicative of the response of the.S194 L-band

radiometer to soil moisture.

Skylab S194 L-band Radiometer and Data Acquisition

The S194 L-band radiometer was one of six sensors known

collectively as the Earth Resources Experiment Package (EREP) flown

on the NASA Manned SKYLAB missions from May 1973 to February 1974.

The L-band radiometer measured terrestrial surface brightness tem-

peratures along the satellite ground track in the microwave radia-

tion band centered at 21.4 cm wavelength (1.41 GHz). The footprint,

or sensor instantaneous ground viewing area, at the half power point

(-3dB) is a circular area with a 115 km diameter area for the 15

degree viewing angle. A footprint size of approximately 280 km

diameter accounted for 90 percent of the total energy received at

the antenna. The spacecraft altitude was 439.24 km (237 nmi) with
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an altitude velocity of 7.65 km/sec. The S194 data acquisition

rate was approximately three data points per second (one data point

per 2.48 surface kiometers). In this study, every third data point,

termed a measurement point, was used in the correlations. For the

halfpower footprint of 115 km diameter, the footprint overlap from

one measurement point to the next was near 87 percent. The foot-

print overlap for each data point was near 95 percent. For the

930 km length of the ground track used in this study (Figure 1)

there were eight independent sensor footprint areas at the half-

power footprint size.

For a more detailed description of the S194 Radiometer and

descriptions of the other EREP sensors, see the "Skylab EREP In-

vestigator's Data Book" (NASA, 1972a) and the "Suaary of Flight

Performance of the Skylab Earth Resources Experiment Package (EREP)",

(NASA, 1974). The S194 data used in the study was gathered in

support of the severe storm environments (EPN-582) task of atmo-

spheric investigations (NASA, 1972b).

The S194 brightness temperatures over the study area ranged

from 229.8 K to 275.2 K. These values for an assumed emitting skin

depth temperature of 298 K, the approximate air temperature along

the ground track at the time of the data pass, would produce an emis-

sivity range from .77 for very moist terrain and .92 for very dry

terrain; both vegetated. Beyond the study area, the brightness tem-

peratures decreased to 95 K over the Gulf of Mexico for an emissiv-

ity of .31 (water temperature assumed to be near 300 K from airborne

PRT-5 thermal infrared readings).

The study area includes the loose sandy soils and sparse
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vegetative cover of the high plains of the Texas and Oklahoma pan-

handles to the tight clay soils and heavily vegetated terrain of

eastern Texas. The weather conditions at the time of the pass at

1518 to 1520 GMT (1018 to 1020 CDT) varied from thin broken cirrus

(not visible in the S190A color photography) over the Texas and

Oklahoma panhandles to multi-layered overcast conditions from just

south of the Red River to the Louisiana border. Precipitating

moderate thunderstorms with an areal coverage of 30 percent were

occurring from the Fort Worth area to near 100 miles southeast

along the ground track. Their rainfall amounts were generally

light since the cells, as determined from GSW weather radar film,

were three to five miles in diameter and were moving toward the

north at 20 knots. The air temperatures along the track ranged

from 294 K to 299 K.

Correlation of S194 Brightness Temperatures and API

Since soil moisture measurements were not available along

the ground track, the soil moisture was parameterized by the ante-

cedent precipitation index. The antecedent precipitation index

(API) was calculated for each of the 180 precipitation reporting

stations of the NOAA Climatological network along the ground track

(NOAA, 1973a and 1973b). The ground track, the sensor viewing

area (115 km diameter), and the location of the precipitation re-

porting stations are shown in Figure 2. Two sets of API were cal-

culated for each station. One API set was calculated for the pre-

ceding eleven days (1-11 June) precipitation data and the other
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API set was calculated for the preceding five days. The set for

eleven days was then plotted and contoured to investigate the con-

tinuity of the API values and possible influence of events not

represented from centerline values. This pattern is shown in

Figure 3.

The precipitation totals for the first eleven days of

June 1973 ranged from zero in the Texas and Oklahoma panhandles

to near 25 cm (10 inches) in the Dallas area. To.eliminate the

influence of very high daily point values of precipitation in the

calculation of the API, the maximum daily rainfall for the API

calculation was arbitrarily set at 5.08 cm (2.0 inches).. The phys-

ical rationale for the assumption is that amounts in excess of

5.08 cm contribute to immediate runoff but probably do not contri-

bute to increased soil moisture.

The arithmetic average of the API for the 115 km diameter

footprint coincident with the position of the spacecraft for every

third data point was then calculated for correlation with the. S194

brightness temperatures. The value of the parameter K was set at

0.9 after trails within the range 0.85 to 0.95 showed the best

correlation of API to S194 brightness temperatures at that value,

although the correlations were good for all values in the range.

The S194 brightness temperature at every third data point (one

measurement point) and the footprint API are displayed in Figures

4a, 4b, and 5. Several features are noteworthy:

1) There is a pronounced correlation between the S194

brightness temperature and the eleven-day API averaged over the

footprint.
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2) There is very little correlation between the S194

brightness temperature and the five-day API. As evident in

Figure 4b, there had been no precipitation over much of the ground

track within the previous five days. If the S194 is used as the

"ground truth" for the API accuracy as a soil moisture indicator,

then the API must include precipitation data for a longer period

than five days, the number of days used in the antecedent moisture

conditions (AMC) in the Soil Conservation Service Handbook of

Hydrology (1972).

3), The correlation is best for values of the API above

1.75, which is consistent with theory for low moisture values.

This relationship is especially evident from Figure 5.

4) The influence of surface water of precipitation and

lakes is not readily apparent, possibly due to the small areal

extent in comparison with the sensor footprint. The surface water

of precipitation may contribute to the lowest S194 values, but

this cannot.be confirmed.

Conclusions

In at least one data set of API and S194 brightness tem-

peratures, several significant points emerged. In addition to the

known capability of L-band remote sensors to accurately detect

soil moisture for small bare-ground areas, the L-band appears well-

suited as a sensor for the spatial mapping of soil moisture over

large inhomogeneous areas with respect to soil type, vegetative

cover, terrain, and weather. Also the API even in a very simple

form appears to be an accurate index of soil moisture but only
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when a precipitation history in excess of five days is included;

the optimal precipitation history period may be as long as one.

month. As these study results are confirmed by independent data

sets, the API may be refined as an accurate soil moisture indica-

tor for meteorological and agricultural applications and L-band

microwave radiometry may be used to develop and refine models of

evapotranspiration and runoff.
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TEXAS

Figure 1. Skylab ground track, 1518 - 1520 GMT, 11 June 1973.

Figure 2. Location of the precipitation reporting stations used

in the computation of antecedent precipitation. The

approximate (due to map projection) sensor footprint

area is shown as the circular areas at each end of

the study area.
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Figure 3. Contoured API values for the eleven day antecedent
precipitation, 11 June 1973,. The centerline valutes
of API are not always representative of the averaged
API within the sensor footprint area.
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Figure 4a. S194 brightness temperature along the ground
track.

2.5

2.0 -

o H'-4

E-4 1.5- 4 O

H

P-4

(b)

o 20 40 60 80 100 120

MEASUREMENT POINTS

Figure 4b. Antecedent precipitation index (API) along
the ground track. The eleven day API is (a);
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temperature range 230 to 270 K was -0.9715.


